q-Karamata functions and second order q-difference equations
نویسنده
چکیده
In this paper we introduce and study q-rapidly varying functions on the lattice q0 := {qk : k ∈ N0}, q > 1, which naturally extend the recently established concept of q-regularly varying functions. These types of functions together form the class of the so-called q-Karamata functions. The theory of q-Karamata functions is then applied to half-linear q-difference equations to get information about asymptotic behavior of nonoscillatory solutions. The obtained results can be seen as q-versions of the existing ones in the linear and half-linear differential equation case. However two important aspects need to be emphasized. First, a new method of the proof is presented. This method is designed just for the q-calculus case and turns out to be an elegant and powerful tool also for the examination of the asymptotic behavior to many other q-difference equations, which then may serve to predict how their (trickily detectable) continuous counterparts look like. Second, our results show that q0 is a very natural setting for the theory of q-rapidly and q-regularly varying functions and its applications, and reveal some interesting phenomena, which are not known from the continuous theory.
منابع مشابه
On a Class of Functional Differential Equations Having Slowly Varying Solutions
Functional differential equations with deviating arguments are studied for the first time in the framework of Karamata regularly varying functions. A sharp condition is established for the existence of slowly varying solutions for a class of second order linear equations of the form x′′ = q(t)x(g(t)), both in the retarded and in the advanced case.
متن کاملA distinct numerical approach for the solution of some kind of initial value problem involving nonlinear q-fractional differential equations
The fractional calculus deals with the generalization of integration and differentiation of integer order to those ones of any order. The q-fractional differential equation usually describe the physical process imposed on the time scale set Tq. In this paper, we first propose a difference formula for discretizing the fractional q-derivative of Caputo type with order and scale index . We es...
متن کاملGrowth of meromorphic solutions for complex difference equations of Malmquist type
In this paper, we give some necessary conditions for a complex difference equation of Malmquist type $$sum^n_{j=1}f(z+c_j)=frac{P(f(z))}{Q(f(z))},$$ where $n(in{mathbb{N}})geq{2}$, and $P(f(z))$ and $Q(f(z))$ are relatively prime polynomials in $f(z)$ with small functions as coefficients, admitting a meromorphic function of finite order. Moreover, the properties of finite o...
متن کاملSeventh-order iterative algorithm free from second derivative for solving algebraic nonlinear equations
متن کامل
Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations
It is shown that, if f is a meromorphic function of order zero and q ∈ C, then m „ r, f(qz) f(z) « = o(T (r, f)) (‡) for all r on a set of logarithmic density 1. The remainder of the paper consist of applications of identity (‡) to the study of value distribution of zero-order meromorphic functions, and, in particular, zero-order meromorphic solutions of q-difference equations. The results obta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011